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1. Introduction

There has been some recent interest in finding string theory realizations of dynamical

supersymmetry breaking. In this short note, we point out that some recently proposed

realizations [1 – 3] have runaway potentials, and therefore do not break supersymmetry in

the usual desired sense. Our analysis here is a standard analysis of the field theory (for

reviews see e.g. [4, 5]), and some of our conclusions may already be known to some experts.

However, encouraged by other experts, we will anyway present here our modest findings,

in the hope that some members of the community might find it useful.

Theories with unstable, runaway directions in field space are generally not considered

as viable models of supersymmetry breaking.1 Runaway unstable modes can be regarded

as a tadpoles, since they lead to violation of the static equations of motion. In looking

for supersymmetry breaking (meta)stable ground states, one must always be careful about

this potential pitfall.

A simple example with runaway is SU(2) gauge theory with Nf = 1 flavor, with

dynamical superpotential for M = QQ̃ [6]

W =
Λ5

M . (1.1)

For any finite 〈M〉, there is no groundstate satisfying the static equations of motion. The

potential sends 〈M〉 → ∞, where asymptotically supersymmetry is restored.

Supersymmetry breaking can also be phrased as an inability to satisfy the chiral ring

relations [7, 1 – 3], but one must still check whether there is a stable, non-supersymmetric

groundstate or a runaway direction. For the above example, the chiral ring is generated

1They could, however, be useful for quintessence.
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by M = QQ̃, and the glueball chiral superfield S ∼ Tr WαW α. The classical ring relations

are SM = 0 and S2 = 0 [7]. They are deformed in the quantum theory to

SM = Λ5, S2 = 0. (1.2)

One way to see that is to follow the instanton calculations of [8]. The quantum rela-

tions (1.2) are incompatible for any finite 〈M〉, but are asymptotically satisfied along the

runaway direction 〈S〉 → 0, 〈M〉 → ∞. One lesson from this example is that incompatible

ring relations do not necessarily mean that supersymmetry is broken. Instead, there could

be a runaway to a supersymmetric ground state at infinity.

Calculable examples of dynamical supersymmetry breaking without runaways were

first presented in [9, 10]. A review and survey of other models can be found e.g. in [5, 11, 12].

It was recently suggested [1 – 3] that a string theory realization of dynamical supersym-

metry breaking is obtained from IIB string theory, with wrapped D5 branes (“fractional

branes”), on a Calabi-Yau space that is locally a complex cone over the surface F1 (a.k.a.

dP1). See [13] for additional examples and discussion. The conformal gauge theory for

D3 branes only on the dP1 geometry was given in [14, 15], and the non-conformal theory

with added wrapped D5 branes in [16]. The dP1 geometry does not admit an analog of

the conifold deformation, which corresponds to the fact that, with wrapped D5 branes, the

IR limit of the gauge theory is not simply SUSY Yang-Mills, with its gaugino condensa-

tion [16]. The suggestion of [1 – 3] is that the IR limit of the cascade exhibits dynamical

supersymmetry breaking. This suggestion was entirely based on an analysis of the low-

energy effective gauge theory. The supergravity dual solution of [17] is singular in the IR,

and there is no presently known smoothed version to illuminate the IR physics.

Here we point out that this quiver gauge theory has a runaway unstable mode, every-

where on the moduli space (the runaway direction is not on a separated branch). There

is no static vacuum where supersymmetry is broken and the equations of motion are sat-

isfied. Much as in (1.1), the fields can always slide down to lower energy values, and

asymptotically supersymmetry is restored (at infinite expectation values of some fields).

Our analysis is formulated in terms of the gauge theory. Perhaps some string theory dy-

namics — outside of the realm of the low-energy field theory analysis — somehow stabilizes

the runaway mode in a way that breaks supersymmetry. In the context of compactification

on a compact Calabi-Yau, this question hinges on whether and how a particular Kähler

modulus is stabilized, as was recently discussed in [13]. This issue merits further study.

Note that the (singular) supergravity solution of [17] is supersymmetric.

The runaway directions that we discuss were already noted in the analysis of [1, 2, 13].

It was suggested [1, 13] that the D-term potentials of some U(1) factors could be a cure.

Here we stress that these U(1) factors are anomalous, and hence massive. Therefore, their

D-term equations should not be imposed. This is related to comments about “dynamical

relaxation” that also already appear in some subsections of [2, 13]. We feel that it is worth

stressing the bottom line: anomalous U(1) D-terms should not be imposed in the low-energy

theory, and they cannot prevent the runaway.

Finally, we should stress that our field theory analysis relies on a Lagrangian with

canonical kinetic terms which are renormalized by field theoretic effects. It is common in
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N = 1 gauge/gravity duality that the moduli space metric requires non-canonical Kähler

potential in the field theory on the branes. A different asymptotic behavior of the Kähler

potential could change the conclusion about the runaway, though any asymptotically ho-

mogeneous Kähler potential will still yield a runaway — either to large or small field

expectation values. A minimum could only come from an inhomogeneity in the Kahler

potential.

The outline of this short note is as follows. In section 2, we review the fact that

anomalous U(1) gauge fields are massive, and that their D-term potentials should not be

imposed [18, 19]. In section 3, we discuss the SU(3M) × SU(2M) × SU(M) quiver gauge

theory of M wrapped D5 branes on the complex cone over F1. The simplest case is M = 1,

where the gauge group is SU(3)×SU(2), and the matter content is similar to the 3-2 model

of [10], but with an extra pair of SU(2) doublets and a particular superpotential. Though

the 3-2 model of [10] does dynamically break supersymmetry with a stable groundstate,

this string inspired variant does not. This example also illustrates that added vector-like

matter can ruin supersymmetry breaking, depending on what its tree-level superpotential

couplings are.

2. Comments on SU(N) vs U(N) in quiver gauge theories

An issue that has been discussed by various authors is whether the worldvolume quiver

gauge theory of branes at singularities is
∏

i SU(Ni) or
∏

i U(Ni). The additional U(1)

factors in the latter case include a decoupled, diagonal, overall U(1) factor, under which

no matter is charged. We will not be concerned with this U(1) here. The remaining U(1)

factors have charged matter, and are hence IR free in four spacetime dimensions. When the

string theory realization is via branes on a local, non-compact Calabi-Yau, the low-energy

gauge theory should thus be considered as
∏

i SU(Ni), because the U(1) couplings vanish

in the IR. These couplings can be taken to be non-zero if the Calabi-Yau space is compact.

A distinct issue is the fact that the U(1) factors of
∏

i U(Ni) are often anomalous, with

e.g. non-zero Tr SU(Ni)
2 U(Nj) anomalies. This is generic for chiral quiver gauge theories,

and a simple example is in D3 branes at a C
3/Z3 orbifold singularity. As discussed in

detail in [19], the worldvolume theory of the branes contains the necessary coupling to

implement the Green-Schwarz anomaly cancellation mechanism as in [18]. The upshot

is that anomalous U(1) gauge fields Aµ are Higgsed by coupling to scalars B, through

(Aµ − ∂µB)2.

Since anomalous U(1) gauge fields are massive, they are not present in the low-energy

effective field theory. For this reason, their D-term equations should not be imposed.

Equivalently, supersymmetry pairs B with a field φ, which plays the role of the FI term for

the anomalous U(1) [18]. The D-term of the anomalous U(1) gauge field can then always

relax to zero, by suitable expectation value 〈φ〉, so it does not constrain the low-energy

fields. This agrees with the discussion in [2], section 3.2.3. See [13] for a discussion in

the context of compact Calabi-Yaus, where it is suggested that some other dynamics could

perhaps induce an additional potential for the Kähler modulus φ.
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3. The gauge theory

The gauge theory of M wrapped D5 branes on the complex cone over F1 is

SU(3M) SU(2M) SU(M) [SU(2) U(1)F U(1)R]

Q 3M 2M 1 1 1 −1

u 3M 1 M 2 −1 0

L 1 2M M 2 0 3

L3 1 2M M 1 −3 −1,

(3.1)

where SU(3M) × SU(2M) × SU(M) are the gauge symmetries, and the groups in [·] are

the global symmetries, with U(1)R an R-symmetry. There is a tree-level superpotential

Wtree = hQuiLjε
ij , (3.2)

where we here explicitly write the SU(2) flavor indices i, j = 1, 2.

Note that we cannot extend SU(3M) → U(3M), because the additional U(1)3M factor

would be anomalous under both of the other two groups, e.g. TrU(1)3M SU(2M)2 = 3M ;

similarly, we cannot extend SU(2M) → U(2M) or SU(M) → U(M), each of the additional

U(1) factors would be anomalous under both of the other two gauge groups.

The couplings, and their charges under various symmetries (some broken) are:

U(1)Q U(1)u U(1)L U(1)L3
U(1)F U(1)R

Λ7M
3M 2M 2M 0 0 0 0

Λ3M
2M 3M 0 2M M 0 0

Λ−3M
M 0 6M 4M 2M −12M 0

h −1 −1 −1 0 0 0.

(3.3)

The four symmetries U(1)K=Q,u,L,L3
assign charge one to K = Q,u,L,L3, and zero to

all other fields; the U(1)F and U(1)R charge assignments are as given in (3.1) (U(1)F ⊂
U(1)Q×U(1)u×U(1)L×U(1)L3

). The SU(M) group factor in (3.1) is IR free, as can be seen

from the negative exponent in its instanton factor in (3.3). The SU(2) and U(1)R global

symmetries are preserved by the couplings. The symmetry U(1)F arises as an accidental

symmetry in the IR, as it is broken only by the IR free group SU(M).

Let us first consider the particular case of M = 1, where the gauge group (3.1) is

SU(3)× SU(2). The matter content of (3.1) in this case is similar to that of the 3-2 model

of [10], but with an extra pair of SU(2) doublets.

3.1 The SU(3) × SU(2) theory (M = 1), in the classical limit.

We initially consider the classical theory (Λ2,3 → 0) without the superpotential (3.2). In

this case the three fields L and L3 can be combined into an SU(3) triplet La=1,2,3. The

gauge invariant fields are

Z = det
fj

Qfuj , Xia = QuiLa, V a =
1

2
LbLcε

abc, (3.4)
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where the color indices are suppressed (except for the SU(2) color index f in the expression

for Z), and the flavor indices are given. These fields satisfy the classical constraints

ZV a − 1

2
XibXjcε

abcεij = 0. (3.5)

The gauge group is completely broken for general expectation values of these fields, and

the complex dimension of the classical moduli space of vacua is the number of fields left

uneaten: 6 + 6 + 6 − 3 − 8 = 7. This agrees with the description of the vacua in terms of

expectation values of the 10 fields (3.4), subject to the 3 classical constraints (3.5).

Let us now consider the theory with added tree-level superpotential

Wtree = hXijε
ij, (3.6)

Since this interaction breaks the global SU(3)× SU(2) symmetry to SU(2), we replace the

index a = 1, 2, 3 with i = 1, 2, and will explicitly write the a = 3 component, so the fields

are Z, Xij , Xi ≡ Xi3, V i ≡ LjL3ε
ij, and V a=3 = 1

2
LiLjε

ij ≡ V . The superpotential (3.6)

lifts the Z, Xij , and Xi classical flat directions, but the V and V i classical flat directions

remain unlifted. These classical flat directions can be parameterized in terms of the original

microscopic fields, up to gauge and flavor rotations, as

L = (L1, L2) =

(
c 0

0 d

)
, L3 =

(√
|d|2 − |c|2

0

)
, (3.7)

which give V = cd, V 1 = −d
√

|d|2 − |c|2 and V 2 = 0, with the other fields vanishing.

Along these unlifted flat directions, the SU(2) gauge group is Higgsed, and the Q and ui

matter fields get a mass from the superpotential (3.6).

There is thus a 3 complex dimensional classical moduli space of vacua left unlifted

by (3.6). The low-energy spectrum along this classical moduli space is SU(3) pure Yang-

Mills, plus the 3 massless chiral superfields V and V i, in the 1 and 2 respectively of the

global SU(2) symmetry. Projecting the classical Kähler potential, Kcl = Q†Q + u†u + L†L

(all gauge and flavor indices are implicit and summed over), on the unlifted classical moduli

space of V and V i expectation values gives

Kcl(V, V †, V i, (V i)†) = 2
√

T , T ≡ V V † + V i(V i)† = V a(V a)†. (3.8)

There is an accidental SU(3) global symmetry, with the moduli re-combined into V a in

the 3, because the interactions from the superpotential (3.6), which had broken the global

SU(3) to SU(2), do not affect the low-energy theory. Away from the origin of the moduli

space, the SU(3) invariant T 6= 0, and the SU(3) symmetry is spontaneously broken to

an SU(2) subgroup. The 6 real massless moduli from V a can then be regarded the real

modulus T , and the 5 Goldstone bosons from SU(3)/SU(2).

3.2 The SU(3) × SU(2) quantum theory for Wtree = 0.

Let us first consider the quantum theory, with Wtree = 0, in the limit Λ3 À Λ2, where the

SU(2) dynamics can be initially ignored. The SU(3) gauge group has Nf = 2 flavors, so

– 5 –
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the dynamically generated superpotential [6] is

Wdyn =
Λ7

3

Z
. (3.9)

Let us now consider the opposite limit, Λ2 À Λ3. The SU(2) gauge theory has Nf =

3, so its low-energy spectrum consists of the SU(2) gauge invariant composites, V a =
1
2
LbLcε

abc, QLa, and Q2, with a superpotential term [20]. The SU(3) gauge theory now

has Nf = 3 flavors of fundamentals, QLa, and anti-fundamentals, Q2 and ui, so its low-

energy spectrum consists of the gauge invariant fields with quantum deformed moduli space

constraint [20]. In addition to the fields (3.4), this yields the following fields, which are

classically zero: Ya = 1
2
(Q2)(QLa), B = 1

6
(QLa)(QLb)(QLc)ε

abc, with superpotential

Wdyn = − 1

Λ3
2

(B − YaV
a) + C

(
1

2
YaXibXjcε

ijεabc − ZB − Λ3
2Λ

7
3

)
. (3.10)

C is a Lagrange multiplier. Integrating out the massive fields V a, Ya, B, and C, we find

Ya = 0, B = −Λ3
2Λ

7
3/Z, and we are left with the low-energy superpotential (3.9) and the

constraint (3.5). It is also seen from the symmetries (3.3) that the constraints (3.5) could

not have been modified by quantum effects.

3.3 The SU(3) × SU(2) quantum theory with Wtree = hXijε
ij, for h 6= 0.

The full superpotential is given by adding Wtree to the dynamical superpotential (3.9),

with the constraints (3.5) imposed with Lagrange multipliers

Wfull =
Λ7

3

Z
+ hXijε

ij + λi(ZV i + XjXklε
jkεil) + λ(ZV − 1

2
XijXklε

ikεjl). (3.11)

This leads to runaway of the field V . Indeed, we can satisfy the supersymmetric equations

of motion for all other fields via Z =
(

Λ14

3

V h2

) 1

3

, Xij = εij

(
V Λ7

3

h

) 1

3

, λi = 0, λ =
(

h4

V Λ7

3

) 1

3

,

Xi = −εijV
j
(

Λ7

3

hV 2

) 1

3

. The low-energy spectrum consists of the fields V and V i, with the

dynamical superpotential

Wlow = 3(h2V Λ7
3)

1/3. (3.12)

Using (3.1) and (3.3), this can be seen to be compatible with all the symmetries.

Here is another way to quickly reproduce the superpotential (3.12): the low-energy

theory on the classical moduli space includes an unbroken SU(3) Yang-Mills theory, with

no light matter. The two SU(3) flavors get a mass ∼ h
√

V from Wtree, so the scale of the

low-energy SU(3) Yang-Mills theory is given by the matching relation

Λ9
3,low = h2V Λ7

3. (3.13)

The superpotential (3.12) arises from gaugino condensation in the SU(3) Yang-Mills theory.

The superpotential (3.12) lifts the classical moduli V and V i, with potential

Veff = KV V † ∣∣h2Λ7
3

∣∣2/3
(V V †)−2/3, (3.14)

– 6 –
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where KV V †
is a component of the inverse Kähler metric, computed on the 3 complex

dimensional moduli space of V and V i. In the limit of large V , we can use the classical

Kähler potential (3.8). The quantum contributions of the SU(2) gauge group become

negligible, because it is broken at a high scale. The quantum contributions of the SU(3)

gauge group also become negligible for large V or V i, even though it remains unbroken.

It is intuitively reasonable that the SU(3) dynamics does not affect Keff for large V, V i, as

the only matter fields that couple SU(3) to L,L3 are the fields Q, which decouple as they

become very massive. In this limit, the low-energy theory has the accidental SU(3) global

symmetry discussed following (3.8), and the effective Kähler potential must be of the form

Keff ≈ Kcl = 2
√

T = 2
√

V V † + V iV i† (3.15)

i.e. we can use the classical Kähler potential (3.8) in (3.14). We conclude that

Veff ≈ |h2Λ7
3|2/3 2V †V + (V i)†V i

√
V †V + (V i)†V i

(V V †)−2/3. (3.16)

In the parameterization (3.7) of the classical moduli space, the potential (3.16) is

Veff ≈ |h2Λ7
3|

2

3

|c|2 + |d|2
|cd|4/3

. (3.17)

For fixed |V |, the potential is minimized by |V i| = 0, and the remaining potential is

Veff ≈ 2|h2Λ7
3|2/3(V V †)−1/6. (3.18)

There is thus a V → ∞ runaway, and in that limit supersymmetry is restored.

The above runaway direction is present not only on the moduli space of the classical

theory with nonzero h, but also on the larger classical moduli space of the theory with

h = 0. Furthermore, it is not isolated on a separated branch. This can also be seen by

working in terms of the D-flat microscopic fields, writing the F-term potential as

Veff =

∣∣∣∣
Λ7

3

Z2
Quu + huL

∣∣∣∣
2

+

∣∣∣∣
Λ7

3

Z2
Q2u + hQL

∣∣∣∣
2

+ |hQu|2 (3.19)

(we suppressed the color and flavor indices which are summed over). Extremizing in the

fields that can have supersymmetric minima, the only light fields are the classical moduli

V and V i, with low-energy potential (3.16). There are no other branches.

To summarize, we have found that the effective potential has runaway behavior and

no metastable SUSY-breaking minimum, at least in the regime of large 〈V 〉, where the

Kähler potential is approximately canonical. The dynamical supersymmetry breaking of

the original SU(3) × SU(2) model of [9] would be recovered if we could add a mass term

Wmass = mL2L3 to the tree-level superpotential. But, in the context of this brane system,

such a mass term is forbidden by the SU(2) global symmetry; this global symmetry is

ensured by the isometry of the space dP1. There is a mass term which respects the SU(2)

global symmetry, Wmass′ = −m
2
LiLjε

ij = −mV , but adding that mass term leads to a

supersymmetric ground state with 〈V 〉 = hΛ
7/2
3 /m3/2. As m → 0 this states moves to

infinity.

– 7 –
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3.4 The generalization to M > 1 wrapped branes.

The gauge theory (3.1) with superpotential Wtree (3.2) has runaway direction:

(L1, L2) =

(
c1M×M 0M×M

0M×M c1M×M

)
, (3.20)

with 1M×M an M × M unit matrix, and 0M×M a vanishing M × M matrix. The gauge

invariant light field along this direction is V ≡ det2M×2M (L1, L2) = c2M , and the group is

Higgsed as SU(3M)×SU(2M)×SU(M) → SU(3M)×SU(M)′, where SU(M)′ is a diagonal

subgroup of SU(2M) × SU(M). The SU(3M) group has no massless flavors, as the fields

Q and ui get a mass along this direction, because of Wtree (3.2). The SU(M ′) have two

massless adjoints, coming from the fields L3. The fields L3 also yield two massless singlets,

corresponding to the gauge invariants Vi = det2M×2M (Li, L3).

The dynamical scales of the low-energy theory are given by the matching relations

Λ9M
3M,low = h2MV Λ7M

3M , ΛM
M,low = (Λ3M

2M )2Λ−3M
M /V, (3.21)

where the exponents in the latter scale relation are because of the index of the embedding

of SU(M)′ ⊂ SU(2M) × SU(M). The effective superpotential along the runaway direc-

tion comes from gaugino condensation in the low-energy SU(3M) Yang-Mills theory (the

SU(M)′ theory has too much massless matter to dynamically generate a superpotential):

Wlow = 3M
(
h2MV Λ7M

3M

)1/3M
. (3.22)

The canonical Kähler potential for V is Kcan ∼ (V V †)1/2M , so the potential for large V is

Veff ∼
∣∣(h2MΛ7M )2V −1

∣∣1/3M
, which again has a runaway 〈V 〉 → ∞.
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